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Resonance effects in the electron distribution function formation in spatially periodic fields
in inert gases
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The calculations of the electron distribution function~EDF! in striationlike, sinusoidally modulated electric
fields were performed to determine the dependence on spatial period length. The calculations were done for a
discharge in neon atpR52 Torr cm, i /R55 mA/cm, and electric fieldE/p51.9 V cm21 Torr21. The pres-
ence of the resonances in the EDF and macroscopic parameters has been demonstrated. These resonances
correspond toSandP striations observed in experiments. An interpretation of the results is proposed based on
an analytical approximation of the numerical solution. Decomposition of EDF into two factors—amplitude and
body—is carried out. The amplitude of the EDF is shown to be resonantly dependent on the value of the spatial
period. One maximum in the EDF is formed at the value of the spatial period corresponding to theSstriation,
and two maxima at the value which corresponds to theP striation. The experimental measurements of the EDF
in S and P striations with high spatial resolution showed agreement between the theoretical and the experi-
mental results. Resonance effects in the EDF formation are considered based on the linear theory in the weakly
modulated electric fields.
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I. INTRODUCTION

The description of the electron component behavior in
spatially periodic electric fields is much needed in the pr
lems of plasma stratification, i.e., the existence of plasm
the form of standing or moving ionization waves.

Electron distribution function~EDF! resonance formation
in spatially periodic electric fields occurs if the electron e
ergy balance is governed by the inelastic processes, and
ergy losses in elastic collisions over the length of the spa
period are small. This situation occurs in the inert gas d
charges at small currents and low pressures, when large
ues of reduced electric fieldE/p are present.

With increasing pressure, when values of the redu
electric field become small, the picture of the movement
electrons differs essentially. The electron energy relaxa
lengthl«5lAM /m (l is the electron mean free path,M and
m are the masses of an atom and an electron, respectiv!
becomes much smaller than the minimum length required
an electron to obtain energy exceeding the excitation thre
old Uex , L05Uex /eE0. In this case, elastic collisions play
remarkable role in the electrons’ energy balance, and re
nance effects do not influence the formation of the EDF
hydrodynamic description of the electrons’ behavior is th
applicable.

In numerous papers, which were reviewed in Refs.@1,2#,
a hydrodynamic approach was used for the description
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mechanisms of striations’ occurrence and propagation.
Starting from Ref.@3#, a kinetic approach is applied fo

the description of stratification phenomena. A series of
pers have been devoted to investigation of the resonance
havior of the EDF. Tsendin@4# obtained an analytical solu
tion of the Boltzmann kinetic equation in the homogeneo
and inhomogeneous fields for the case of inelastic ene
balance. It was shown that the relaxation process of an a
trary initial EDF in the homogeneous electric field has
form of damped oscillations with the energy periodUL

res and
spatial periodL res. It is possible to consider the electrons
being accelerated in the electric field with approximate c
servation of their total energy«5U1ew(x) @kinetic energy
U plus potential energyew(x)] until they acquire a kinetic
energy equal to the excitation threshold. Then they unde
inelastic collisions with simultaneous loss of a quantum
energy equal to the excitation threshold, and continue th
motion with a smaller value of the total energy. This stepw
mechanism determines the characteristic periodicity scal
energy space,UL

res5Uex1DU (Uex is the excitation energy
andDU is the small energy losses in elastic collisions! and
the spatial periodL res5UL

res/E0 (E0 is the period-averaged
electric field!. The spatial scaleL res fixes the resonance
length of the periodic fieldE(x) ~the resonance field!.
Namely, the resonance field is formed self-consistently in
stratified positive column and defines the fundamental m
of the wave.

Different kinds of striations are discovered experimenta
in inert gases under low pressures and small currents. In
@1#, a detailed nomenclature of the observed waves accor
©2003 The American Physical Society04-1
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to their dispersion properties and to the potential fall ove
wavelength is given. In particular, Ref.@5# shows that in
different inert gases there exists a wave with a potential d
of the order of magnitude of the first excitation thresho
This wave was calledS striation. Along with theS striation,
a wave was observed with the potential drop two tim
smaller than that inSstriation. This wave was calledP stria-
tion.

The fall in potential over the length ofSstriation is equal
to UL

res. The potential fall over the length ofP striation is
equal toUL

res/2, as long as the wavelength ofP striation is
two times smaller than that ofSstriation. The electrons in the
P striations should travel two spatial periods in order to
quire an energy equal to the excitation threshold.

Relaxation of an initial EDF in the spatially periodic ele
tric field with small modulation degree leads to an establi
ment of the periodic EDF with an amplitude depending re
nantly on the spatial period of the field@4#. In electric fields
with a large degree of modulation, a bunching effect@4# was
observed, which is the constriction of the EDF towards
resonance trajectories on the plane («,x). The amplitude of
the EDF has, in this case, the form of a narrow Gaussia

Relaxation processes of arbitrary initial EDFs inject
into the homogeneous and sinusoidally modulated elec
fields are illustrated in Ref.@6# on the basis of a numerica
solution of the kinetic equation, accounting for elastic co
sions and excitation of several levels. The electric field w
strongly modulated and the spatial period was taken equ
the resonance length~corresponding to anS striation! and to
the half of that~corresponding to aP striation!. Similar re-
sults have been obtained in Ref.@7# on the basis of solving
analytically the kinetic equation. The EDFs obtained in the
fields demonstrate the bunching effect that is caused bot
small energy losses in elastic collisions and by the prese
of the several excited levels. In Ref.@8#, the EDFs formed in
the resonance electric fields and also in the fields with sm
deviations of the spatial period towards smaller and lar
values are discussed.

The objective of the present work is to analyze the ED
in spatially periodic electric fields to determine the depe
dence on the period of the field. Scanning over a wide ra
of the field periods will permit us to elucidate the essence
the resonance formation of the EDF and its influence on
macroscopic quantities. The origin of the resonances
pointed out by the decomposition of the EDF into two fa
tors with help of numerically solving the Boltzmann kinet
equation in strongly modulated fields and by applying line
analysis for weakly modulated fields. The measurement
distribution functions with high spatial resolution inS andP
striations confirm the resonant character of the EDF form
tion.

II. THE EDF AND MACROSCOPIC QUANTITIES
IN THE SPATIALLY PERIODIC ELECTRIC FIELDS

In Ref. @8#, the EDF behavior was analyzed in the vicini
of the resonance lengthL res. The calculations were per
formed for the discharge in neon atE0 /p
52 V cm21 Torr21 and field modulation degreea50.9. The
02640
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resonance length was found to be equal toL resp
59.67 cm Torr. The distribution functions were shown f
the values ofL50.9L res, L51.0L res, and L51.1L res, and
the strong variation of the EDF appearance in the giv
range ofL was noted.

It is possible to obtain sharper resonances if one increa
strongly the frequency of inelastic collisions. This leads to
much steeper reduction of the EDF in the inelastic region
energies exceeding the excitation threshold. The deforma
of the EDF at small energies caused by the backscatte
processes is also reduced. Consequently, the numerical
tion of the kinetic equation will strive to the ‘‘black wall’’
approximation, which is the solution with the zero bounda
condition at the excitation threshold.

In the present paper, calculations are performed for a
nusoidally modulated electric field with modulation degr
a50.9 and a period-averaged value ofE0 /p
51.9 V cm21 Torr21, which corresponds to a discharge
neon at a pressurep51 Torr, current i 510 mA, and R
52 cm.

The Boltzmann kinetic equation for the isotropic part
the EDF, f 0(«,x), in terms of the variables total energy«
and coordinatex can be written as

]

]x
D«~v !

] f 0~«,x!

]x
1

]

]«
V«~v ! f 0~«,x!

5vn* ~v ! f 0~«,x!2v8n* ~v8! f 0~«1Uex ,x!,

~1!

where D«5v3/3n(v) is the diffusion coefficient, V«

52m2/Mn(v)v3 is the drift coefficient in energy space du
to elastic collisions,m andM are the masses of an electro
and an atom,n* (v) is the total frequency of inelastic pro
cesses, andn(v) is the frequency of elastic collisions. Ve
locities v andv8 are related by the energy conservation la
mv82/25mv2/21Uex.

We shall consider the spatial relaxation of an arbitra
initial EDF, f 0

init(«)ux505 f 0
init(U), in the homogeneous elec

tric field E0 and in the spatially modulated electric fields
the form

E~x!5E0F11a cosS 2px

L D G , ~2!

with the potentialew(x)5*0
xE(x)dx, whereL is the spatial

period. The kinetic equation~1! has to be supplemented b
the appropriate boundary conditions:

f 0~«,x!uU→`50,
] f 0~«,x!

]x U
U50

50. ~3!

The Crank-Nickolson algorithm@9# was used for the numeri
cal analysis of Eq.~1! with the boundary conditions~3!. The
distribution function was normalized using the consta
value of the electron current density
4-2
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j 5
1

3
A2

mE
0

`

U f 1~U !dU,

wheref 1(U) is the directed part of the distribution function
The frequencies of inelastic collisions were taken two ord
of magnitude higher than those in Ref.@8# in order to dem-
onstrate more sharp resonance behavior of the EDF for
tion.

At first Eq. ~1! was solved for the case of the homog
neous electric fieldE0 in order to obtain the value of th
resonance spatial periodL res. The resonance length dete
mined as the period of damped oscillations in the EDF w
found to beL res59.8 cm. In the second step, Eq.~1! was
solved in the inhomogeneous electric field~2! for the differ-
ent values of the spatial periodL belonging to the range 4
212 cm. It was found that atL5L res andL5L res/2 the pro-
nounced structures in the EDF appear which correspon
the two resonances at these values ofL.

The three-dimensional~3D! plots for the EDF in the vi-
cinity of the resonance are shown in Fig. 1 by analogy
Ref. @8#. It is seen that a small detuning in the period leng
changes significantly the form of the EDF.

FIG. 1. Electron distribution function in the sinusoidally mod
lated electric field@Eq. ~2!# in the vicinity of the resonance.~a! L
50.9L res, ~b! L5L res, ~c! L51.1L res.
02640
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The resonance atL5L res, the EDF is compressed into
peak which moves on the plane (U,x) as, it is seen in Fig.
1~b!. In the coordinates («,x), this maximum moves along
the trajectory« res(x) shown in Fig. 2, where the contour plo
of the distribution function@Fig. 1~b!# is given. At smaller
@Fig. 1~a!# or larger@Fig. 1~c!# values ofL, the modulation in
the EDF is significantly decreased.

In order to illustrate the resonance behavior of the m
roscopic quantities, the modulation degrees of the elec
densityn and the mean electron energyŪ were calculated:

mn~L !5
nmax2nmin

nmax1nmin
%,

mŪ~L !5
Ūmax2Ūmin

Ūmax1Ūmin

%,

where n(x)5*0
`AU f 0(U,x)dU and Ū(x)

5n21*0
`U3/2f 0(U,x)dU. Indices max and min correspon

to the maximal and the minimal values of these parameter
the period.

In Fig. 3, the results of calculation for the modulatio
degrees of electron density and mean energy are represe
as the functions of the spatial periodL. This figure reveals
the presence of two resonances atL5L res and L5L res/2
which corresponds toS andP striations observed in the ex
periments. It is also seen that the resonances on the curv
the mean energy~curveB) are more pronounced than for th
density ~curve A). Transition to the ‘‘black wall’’ approxi-
mation results in sharper resonance on the mean ene
which can be seen from the comparison of the curveB with
the data of Ref.@8#.

It is seen from Fig. 1 that the EDF dependence on
spatial periodL is highly complicated. It is necessary to s
lect a parameter which will characterize the form of the ED
and be sensitive to the alteration of the spatial periodL. This

FIG. 2. Contour plot of the resonance EDF on the plane («,x).
« res(x) is the resonance trajectory. At the curvesx0(«) andxex(«),
the kinetic energy of the electrons equals zero andUex, respec-
tively.
4-3
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parameter can be chosen on the basis of the following c
siderations. An analytical solution of Eq.~1! under the
‘‘black wall’’ approximation, i.e., with the boundary cond
tions f 0(«,x)uU5Uex

50, can be obtained@4# in the form of

the series expansion relative to the small parameted
56m2n2(v1)Uex/M (eE0)2 @v15(2Uex/m)1/2# as follows:

f 0~«,x!5(
i 50

f 0
( i )~«,x!d i . ~4!

The leading termf 0
(0)(«,x) can be written as

f 0
(0)5F~«!E

x

xex(«) dx

D«
[F~«!F~«,x!, ~5!

wherexex(«) is the curve on the plane («,x), at which the
kinetic energy of the electrons is equal toUex, F(«) is the
amplitude of the distribution function, andF(«,x) is the dis-
tribution function which is formed in the electric field~2!
when the energy losses in elastic collisions are neglec
This function can be easily calculated according to its d
nition.

Accurate numerical solution of Eq.~1! can be approxi-
mated by expression~4!. In this case, the amplitudeF(«)
can be obtained from the relation

F~«!5
f 0~«,x!

F~«,x!
, ~6!

where f 0(«,x) is the strict numerical solution of Eq.~1! in
the electric fields with different spatial periodsL, andF(«,x)
is given by expression~5! and depends on the spati
periodL.

This approach gives a representation of the EDF a
product of two factors, one of which,F(«,x), is almost in-
sensitive to the alteration of the spatial periodL and the
other,F(«), reacts strongly on the variations inL. Function

FIG. 3. Degrees of modulation of the electron density~curveA)
and mean electron energy~curve B) versus spatial period length
Comparison with the data of Ref.@8# for the modulation degree o
the mean energy~curveC).
02640
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F(«,x/L res) is shown in Fig. 4 on the plane@«,x2x0(«)# for
the case whenL5L res. For other values ofL, the function
F(«,x/L) has almost the same appearance. The scale o
spatial decrease is the only parameter that is varied.

It is seen from Fig. 5 thatF(«,L) depends resonantly o
the value of the spatial periodL. A sharp Gaussian maximum
in F(«) is formed in the vicinity ofL5L res. This maximum
defines the final form of the EDF. The procedure of the E
decomposition into two factors is a sort of approximati
which leads to a small shift of the maximum value ofF(«)
relative toL5L res. An analysis of the 3D plots shows tha
the peak ofF(«) corresponding to the resonance EDF
placed atL5L res and «50.6UL

res. The value«50.6UL
res

gives the position of the resonance trajectory on the pl
(«,x) along which the total energy losses in elastic and
elastic collisions (Uex1DU) are equal to the fall of potentia
eE0L res over the period. It is also seen in Fig. 5 that tw
maxima are formed inF(«) at a value ofL5L res/2 and
energies«50.3UL

res and «50.8UL
res. These maxima define

two resonance trajectories on the plane («,x). The electrons
in an electric field with spatial periodL res/2 are bunching to
these trajectories.

This procedure describes bunching in spatially period
strongly modulated resonance fields.

III. EXPERIMENTAL MEASUREMENTS OF THE EDF
IN S AND P STRIATIONS

The EDF formation mechanism described above is c
firmed by the experimental data giving the EDF measu

FIG. 4. The functionF(«,x) @Eq. ~5!# which depends weakly on
the spatial periodL of the field.

FIG. 5. The amplitudeF(«) @Eq. ~6!# versus spatial period o
the electric field.
4-4
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ments in S and P striations, carried out with high spatia
resolution.

The measurements were conducted in a discharge
with inner diameter 40 mm and distance between electro
55 cm. The electrodes were supplied with screw displa
ment units that allowed the discharge to be moved relativ
the stationary probe in steps of 0.7 mm at one full scr
rotation. The resulting spatial resolution in the axial directi
was limited by the probe length of 1.5 mm. The experimen
setup is shown in Fig. 6. The EDF was measured by
well-known technique of double differentiation of curren
voltage characteristics of the probe. The time resolution w
24 ms.

The measurements were conducted as follows. The s
wise potential in steps of 0.1 V was supplied to the probe
one fixed probe position. For each step of the potential,
dependence of the probe current on time was measured.
total measurement procedure for a given spatial position t
120 S. The time evolution of the EDF at a given spat
position was thus obtained.

Assuming that the plasma potential is defined by the z
of the second derivative, it is possible also to determine
spatiotemporal distribution of the plasma potential in the io
ization wave.

The measurements were performed in a neon discharg
a pressure ofp51.5 Torr forS striation andp51.0 Torr for
P striation. The discharge current was equal to 10 mA in b
cases. The fall of the potential inS striation was equal to
FLS

519 V on the periodLS510.15 cm, and inP striation it

was equal toFLP
59.5 V on the periodLP55.1 cm. The

period-averaged value of the electric field wasE0
51.9 V/cm in both cases.

The measurements and calculations of the EDFs in
experimentally measured electric fieldE(x) are shown in
Figs. 7~a,b! for S striation and in Figs. 8~a,b! for P striation.

It is seen from the figures that these measured and ca
lated EDFs correlate well. The form of EDF in striations
defined by the formation of one resonance peak onF(«) at
«50.6UL

res in S striation and two peaks at«50.3UL
res and«

50.8UL
res in P striation. The experimental EDFs ar

smoother than the calculated ones, which can be attribute

FIG. 6. Experimental setup for the measurements of the ED
striations. 1 is the discharge tube with movable anode and cath
2 is the current stabilizer and modulator, 3 is the high voltage s
ply, 4 is the current-voltage convertor, 5 is the function generato
is the stepwise voltage source, 7 is the analog-to-digital conve
and 8 is the personal computer.
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surement.

IV. LINEAR THEORY OF THE EDF FORMATION
IN THE SPATIALLY PERIODIC WEAKLY MODULATED

ELECTRIC FIELDS

The previous sections were devoted to the analysis of
kinetic equation in electric fields with an arbitrary degree

in
e,
-
6
r,

FIG. 7. Comparison of the measured~a! and calculated~b!
EDFs inS striation. Neon,pR53.0 Torr cm, i /R55 mA/cm.

FIG. 8. Comparison of the measured~a! and calculated~b!
EDFs inP striation. Neon,pR52.0 Torr cm, i /R55 mA/cm.
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modulation based on the approximation of the numerical
lution by an analytical expression. It was thus possible
observe the dependence of the EDF resonance behavio
the spatial period of the electric field.

In weakly modulated electric fields, a strict analytical a
proach to the kinetic equation is possible. This approach
lustrates the resonance nature of the distribution function
mation, proposed by Tsendin@4#.

The distribution functionf 0
(0)( «̃,x) can be represented i

form ~5! where the amplitudeF( «̃) satisfies the equation
~see the Appendix!

F~«̃212dA!2F~«̃!2d2B
]2F

]«̃2
5dx

]

]«̃
F~«̃ !exp~2 ik «̃ !,

~7!

where «̃ is the dimensionless total energy measured in
Uex units. Equation~7! describes the evolution of the initia
distribution function injected in the homogeneous field~if
a50 and x50) or periodic field with the periodL
5(2p/k)(Uex/E0).

The potential energy in the spatially periodic elect
fields with a small degree of modulation isew̃( x̃)52 x̃

1(a/2p)exp(ikx̃), where the dimensionless variablesx̃
5x/L res and w̃5w/Uex are used. In what follows the tilde
sign will be omitted. In this field, the relative energy loss
in elastic collisions can be expressed as a function of
total energy«,

C~«!5A1x exp~2 ik«!. ~8!

The weakly modulated functionB(«) can be considered
approximately as a constant~see the Appendix!. The relax-
ation of a distribution function injected in the homogeneo
electric field (a50,x50) is described by the homogeneo
equation~7! with the right-hand side equal to zero.

The solution of the homogeneous equation can be re
sented as a Fourier series,

Fhom~«!5(
n

Fhom
n exp@~ ikn1gn!«#, ~9!

kn5
2pn

11dA
, gn5~2pnd!2B,

Fhom
n 5E

0

1

F init~«!exp~2 ikn«!d«.

It is seen from Eq.~9! that all harmonics withnÞ0 are
damp ~negative values of the total energy« are assumed!.
Relaxation has the form of damped oscillations with per
defined by the first mode (n51), i.e., with the resonanc
lengthL res5(11dA)Uex/eE0, as it is can be seen from ex
pression~9!. The final result of the relaxation is the esta
lishment of the EDF independent of the initial condition a
homogeneous in space, which is the solution of kinetic eq
tion ~1! in the homogeneous electric field.
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The relaxation process of an EDF injected in the wea
modulated electric field is described by the inhomogene
equation~7! with the right-hand side being treated as t
periodic external force with the period 2p/k. If we write the
unknown solution of the equation in the form

Fvar~«!5Fhom~«!1dF̃~«!, ~10!

we come to the following expression forF̃(«):

F̃~«,k!5(
n

F̃ (n)~k!exp$@ i ~kn2k!1gn#«%,

F̃ (n)~k!5Fhom
(n) $x@ i ~kn2k!1gn#%@d2B~kn2k!221

1exp$2@ i ~kn2k!1gn#~11dA!%#21. ~11!

It is seen from Eq.~11! that at valuesk, satisfying the ex-
pression (kn2k)(11dA)52pm, the resonances ar
formed. In this case only the terms connected with the n
zero Q factor are retained in the denominator of the righ
hand side of Eq.~11!,

exp@2gn~11dA!#211d2B~kn2k!2;gm2gn .

Given that all harmonics withnÞ0 are damp, the final resul
is

F̃ (0)~k!5Fhom
(0) 2 ikx

exp@ ik~11dA!#211d2Bk2
. ~12!

Expression~12! describes the amplitude of the EDF e
tablished in a spatially periodic electric field with an arb
trary valuek. The EDF in this case can be written as

f 0~«,x,k!5@Fhom
(0) 1dF̃ (0)~k!exp~ ik«!#F0~«,x,k!.

~13!

When k takes on the valuesk52pn/(11dA) corre-
sponding to the energy periods«5UL

res/n and spatial periods
L5L res/n, the exponential term in Eq.~11! becomes equal to
unity which describes the resonances on the funct
F̃ (0)(k).

Figure 9 shows the dependence of the fundamental
monicsF̃ (0) on the spatial periodL. The figure demonstrate
the resonant nature of the harmonic atL5L res/n. The de-
pendence of the real part ofF̃(«), which describes the form
of the EDF in the spatially periodic electric fields~13!, is
shown in Fig. 10. It is seen from Fig. 10 that atL5L res and
«50.5UL

res one sinusoidal maximum is formed, and atL
5L res/2 and «50.25UL

res, «50.75UL
res two maxima are

formed.
The presented theory qualitatively describes the peculi

ties of the EDF formation which can be seen from the co
parison of Figs. 10 and 5. It is also seen from expressi
~11! and~13! that the alternating addition to the amplitude
the EDF has a very small value of the order ofdx and
therefore results in a very weak modulation of the solution
the homogeneous field.
4-6
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In Ref. @4#, the case of the moderately modulated fie
was also considered. It was shown that in this case the
plitude of the EDF has the form of a Gaussian with a ma
mum similar to that shown in Fig. 5.

V. CONCLUSION

In this paper, the calculations of the EDF in spatially p
riodic, sinusoidally modulated electric fields with a larg
modulation degree have been performed. The dependenc
the spatial period lengthL was investigated. The calculation
were done for the conditions which correspond to the n
discharge at pressurepR52 Torr cm, current i /R
55 mA/cm, and the period-averaged electric field stren
E51.9 V/cm. The inelastic collisions dominate in the e
ergy balance of the electrons under the chosen conditi
This fact results in a resonant behavior of the EDF. The fo
of the EDF in the vicinity of the resonance is shown. T
calculations of the EDF and the macroscopic parameter
the plasma have shown the presence of two resona
which correspond toS and P striations observed in exper
ments. An interpretation of the results based on the analy
approximation of the numerical solution is proposed. T
amplitude of the EDF,F(«), dependent on the total energy«
and spatial periodL has been introduced. It is shown that
L5L res one Gaussian maximum and atL5L res/2 two Gauss-
ian maxima are formed on the amplitudeF(«). The experi-
mental measurements of the EDF inSandP striations reveal

FIG. 9. Real part of the alternating undamped part of the am

tudeF̃ (0)(k) @Eq. ~12!# versus spatial period lengthL.

FIG. 10. AmplitudeF̃(«) @Eq. ~10!# versus total energy and
spatial period of the electric fieldL.
02640
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good agreement between the experimental and theore
data. The calculations of the resonant behavior of the E
based on the linear theory proposed in Ref.@4# are shown.
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APPENDIX

According to Ref.@4#, the kinetic equation with appropri
ate boundary conditions can be written in dimensionl
variables as

]

]x
D̃«

] f 0~«,x!

]x
1d

]

]«
Ṽ«~U ! f 0~«,x!50, ~A1!

f 0~«,x!uU5Uex
50,

D̃«

] f 0~«,x!

]x U
x5x0(«)

5D̃«

] f 0~«,x!

]x U
x5xex(«)

, ~A2!

where the energy and potential are measured in unitsUex,
length is measured in units Uex/eE0 , D̃«(U)
5D«(U)/D«(Uex), Ṽ«(U)5V«(U)/V«(Uex). The solution
of Eq. ~A1! can be written in the series expansion up to t
terms squared in parameterd,

f 0~«,x!5 f 0
(0)~«,x!1d f 0

(1)~«,x!1d2f 0
(2)~«,x!.

After substitution of the expansion in Eq.~A1! and making
use of the first boundary condition, we obtain

f 0
(0)~«,x!5F~«!F~«,x!,

F~«,x!5E
x

xex(«) dx

D̃«~U !
,

f 0
(1)~«,x!52E

x

xex(«) dx8

D̃«~U8!

]

]«Ex0(«)

x8
Ṽ«~U ! f 0

(0)~«,x!dx,

f 0
(2)~«,x!52E

x

xex(«) dx8

D̃«~U8!

]

]«Ex0(«)

x8
Ṽ«~U ! f 0

(1)~«,x!dx.

In order to satisfy the second boundary condition~A2!, it
is necessary to calculate the derivative off 0(«,x) at upper
and lower limits,

i-
4-7
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D̃«

] f 0~«,x!

]x U
x5xex(«)

5F~«!1d
]

]«
F~«!E

x0(«)

xex(«)

Ṽ«F~«,x!dx

1d2
]

]«Ex0(«)

xex(«)

Ṽ«dxE
x

xex(«) dx8

D̃«

]

]«
F~«!

3E
x0(«)

x8
Ṽ«F~«,x9!dx9.

Taking into account thatx0(«21)5xex(«), we obtain

D̃«

] f 0~«,x!

]x U
x5x0(«)

5F~«21!,

and according to the second boundary condition~A2! we
obtain an equation for the amplitudeF(«),

F~«21!5F~«!1d
]

]«
F~«!C~«!1d2

]2

]«2
F~«!C~«!,

~A3!

where

C~«!5E
x0(«)

xex(«)

Ṽ«~U !F~«,x!dx,
ys

R.

02640
C~«!5E
x0(«)

xex(«)

Ṽ« dxE
x

xex(«) dx8

D̃«~U8!

3E
x0(«)

x8
Ṽ«~U9!F~«,x9!dx9. ~A4!

In the homogeneous electric field, the functionsC(«) and
C(«) are constants. In the weakly modulated electric fie
w52x1w̃ exp(ikx), the functionC can be represented a
C(«)5A1x exp(2ik«) and the weakly modulated functio
C(«) can be considered as constant, since after triple in
gration ~A4!, required for its calculation, inhomogeneitie
vanish.

To solve Eq.~A3!, it is expedient to shift the argument«
by the valuedA. Taking into account the terms squared ind,
Eq. ~A3! can be written as

F~«212dA!2F~«!2d2B
]2F~«!

]«2

5dx
]

]«
F~«!exp~2 ik«!, ~A5!

whereB5C2A2/2. This equation can be used for solvin
the electron kinetics problems in inhomogeneous elec
fields of arbitrary configuration.
.

s.
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